Unsigned Integer Types
Description
The library provides safe unsigned integer types that detect overflow, underflow, and other undefined behavior at runtime. These types are drop-in replacements for the standard unsigned integer types with added safety guarantees.
| Type | Underlying Type | Width | Min | Max |
|---|---|---|---|---|
|
|
8 bits |
0 |
255 |
|
|
16 bits |
0 |
65,535 |
|
|
32 bits |
0 |
4,294,967,295 |
|
|
64 bits |
0 |
18,446,744,073,709,551,615 |
|
|
128 bits |
0 |
340,282,366,920,938,463,463,374,607,431,768,211,455 |
Each type exposes a basis_type member type alias that refers to the underlying integer type, allowing conversion back to built-in types when needed.
#include <boost/safe_numbers/unsigned_integers.hpp>
namespace boost::safe_numbers {
using u8 = detail::unsigned_integer_basis<std::uint8_t>;
using u16 = detail::unsigned_integer_basis<std::uint16_t>;
using u32 = detail::unsigned_integer_basis<std::uint32_t>;
using u64 = detail::unsigned_integer_basis<std::uint64_t>;
using u128 = detail::unsigned_integer_basis<int128::uint128_t>;
template <unsigned_integral BasisType>
class unsigned_integer_basis {
public:
using basis_type = BasisType;
// Construction
constexpr unsigned_integer_basis() noexcept = default;
explicit constexpr unsigned_integer_basis(BasisType val) noexcept;
template <typename T>
requires std::is_same_v<T, bool>
explicit constexpr unsigned_integer_basis(T) noexcept = delete; // bool prohibited
// Conversion to underlying types
template <unsigned_integral OtherBasis>
explicit constexpr operator OtherBasis() const;
// Comparison operators
friend constexpr auto operator<=>(unsigned_integer_basis lhs, unsigned_integer_basis rhs) noexcept
-> std::strong_ordering = default;
// Compound assignment operators (arithmetic)
template <unsigned_integral OtherBasis>
constexpr auto operator+=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator-=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator*=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator/=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator%=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
// Compound assignment operators (bitwise)
constexpr auto operator&=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator|=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator^=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator<<=(unsigned_integer_basis rhs) -> unsigned_integer_basis&;
constexpr auto operator>>=(unsigned_integer_basis rhs) -> unsigned_integer_basis&;
// Increment and decrement operators
constexpr auto operator++() -> unsigned_integer_basis&;
constexpr auto operator++(int) -> unsigned_integer_basis;
constexpr auto operator--() -> unsigned_integer_basis&;
constexpr auto operator--(int) -> unsigned_integer_basis;
// Unary operators
constexpr auto operator+() const noexcept -> unsigned_integer_basis;
constexpr auto operator-() const noexcept; // compile-time error
}; // class unsigned_integer_basis
// Arithmetic operators (throw on overflow/underflow)
template <unsigned_integral BasisType>
constexpr auto operator+(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator-(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator*(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator/(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator%(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
// Bitwise operators
template <unsigned_integral BasisType>
constexpr auto operator~(unsigned_integer_basis<BasisType> lhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator&(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator|(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator^(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator<<(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs)
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator>>(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs)
-> unsigned_integer_basis<BasisType>;
// Saturating arithmetic (clamp to min/max on overflow/underflow)
template <UnsignedLibType T>
constexpr T saturating_add(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T saturating_sub(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T saturating_mul(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T saturating_div(T lhs, T rhs);
template <UnsignedLibType T>
constexpr T saturating_mod(T lhs, T rhs);
// Overflowing arithmetic (wrap and return overflow flag)
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_add(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_sub(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_mul(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_div(T lhs, T rhs);
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_mod(T lhs, T rhs);
// Checked arithmetic (return std::nullopt on overflow/underflow)
template <UnsignedLibType T>
constexpr std::optional<T> checked_add(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::optional<T> checked_sub(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::optional<T> checked_mul(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::optional<T> checked_div(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::optional<T> checked_mod(T lhs, T rhs) noexcept;
// Wrapping arithmetic (wrap without indication)
template <UnsignedLibType T>
constexpr T wrapping_add(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T wrapping_sub(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T wrapping_mul(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T wrapping_div(T lhs, T rhs);
template <UnsignedLibType T>
constexpr T wrapping_mod(T lhs, T rhs);
// Strict arithmetic (call std::exit(EXIT_FAILURE) on error)
template <UnsignedLibType T>
constexpr T strict_add(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T strict_sub(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T strict_mul(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T strict_div(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T strict_mod(T lhs, T rhs) noexcept;
// Saturating shifts (clamp to max/0 on overflow)
template <UnsignedLibType T>
constexpr T saturating_shl(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T saturating_shr(T lhs, T rhs) noexcept;
// Overflowing shifts (wrap and return overflow flag)
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_shl(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::pair<T, bool> overflowing_shr(T lhs, T rhs) noexcept;
// Checked shifts (return std::nullopt on overflow)
template <UnsignedLibType T>
constexpr std::optional<T> checked_shl(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr std::optional<T> checked_shr(T lhs, T rhs) noexcept;
// Wrapping shifts (wrap without indication)
template <UnsignedLibType T>
constexpr T wrapping_shl(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T wrapping_shr(T lhs, T rhs) noexcept;
// Strict shifts (call std::exit(EXIT_FAILURE) on error)
template <UnsignedLibType T>
constexpr T strict_shl(T lhs, T rhs) noexcept;
template <UnsignedLibType T>
constexpr T strict_shr(T lhs, T rhs) noexcept;
// Generic policy-parameterized arithmetic
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto add(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto sub(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto mul(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto div(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto mod(T lhs, T rhs);
// Generic policy-parameterized shifts
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto shl(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto shr(T lhs, T rhs);
} // namespace boost::safe_numbers
Operator Behavior
Default Construction
constexpr unsigned_integer_basis() noexcept = default;
Values are default-initialized to zero.
Construction from Underlying Type
explicit constexpr unsigned_integer_basis(BasisType val) noexcept;
Construction from the underlying type is explicit to prevent accidental conversions.
Construction from bool
template <typename T>
requires std::is_same_v<T, bool>
explicit constexpr unsigned_integer_basis(T) noexcept = delete;
Constructing from bool is a compile-time error.
Conversion to Underlying Types
template <unsigned_integral OtherBasis>
explicit constexpr operator OtherBasis() const;
Conversion to other unsigned integral types is explicit.
Widening conversions (e.g., u8 to u16) always succeed.
Narrowing conversions (e.g., u32 to u16) perform a runtime bounds check: if the value exceeds the maximum representable value of the target type, std::domain_error is thrown.
This allows safe narrowing when the value is known to fit at runtime.
Comparison Operators
friend constexpr auto operator<=>(unsigned_integer_basis lhs, unsigned_integer_basis rhs) noexcept
-> std::strong_ordering = default;
Full three-way comparison is supported via operator<=>, which returns std::strong_ordering.
All comparison operators (<, ⇐, >, >=, ==, !=) are available.
Arithmetic Operators
template <unsigned_integral BasisType>
constexpr auto operator+(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator-(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator*(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator/(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator%(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) -> unsigned_integer_basis<BasisType>;
All arithmetic operators perform runtime checks and throw exceptions when undefined behavior would occur:
-
+: Throwsstd::overflow_errorif the result exceeds the maximum representable value -
-: Throwsstd::underflow_errorif the result would be negative (wrap around) -
*: Throwsstd::overflow_errorif the result exceeds the maximum representable value -
/: Throwsstd::domain_errorif dividing by zero -
%: Throwsstd::domain_errorif the divisor is zero
Compound Assignment Operators
template <unsigned_integral OtherBasis>
constexpr auto operator+=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator-=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator*=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator/=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
template <unsigned_integral OtherBasis>
constexpr auto operator%=(unsigned_integer_basis<OtherBasis> rhs) -> unsigned_integer_basis&;
Compound assignment operators follow the same exception behavior as their corresponding arithmetic operators.
Bitwise Operators
template <unsigned_integral BasisType>
constexpr auto operator~(unsigned_integer_basis<BasisType> lhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator&(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator|(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator^(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs) noexcept
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator<<(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs)
-> unsigned_integer_basis<BasisType>;
template <unsigned_integral BasisType>
constexpr auto operator>>(unsigned_integer_basis<BasisType> lhs,
unsigned_integer_basis<BasisType> rhs)
-> unsigned_integer_basis<BasisType>;
The bitwise NOT, AND, OR, and XOR operators (~, &, |, ^) are noexcept and operate directly on the underlying values, since these operations cannot overflow.
The shift operators (<<, >>) perform runtime bounds checking:
-
<<: Throwsstd::overflow_errorif the left shift would move bits past the type width. Specifically, this occurs whenbit_width(lhs) + rhs >= std::numeric_limits<BasisType>::digits. -
>>: Throwsstd::overflow_errorif the shift amount is greater than or equal to the type width (i.e.,rhs >= std::numeric_limits<BasisType>::digits).
Shift Overflow Policies
In addition to the default throwing behavior, the shift operators support the same overflow policies as arithmetic operations.
The overflow condition for left shift is when bit_width(lhs) + rhs >= digits, and for right shift is when rhs >= digits.
// Saturating: clamp to max (left shift) or 0 (right shift) on overflow
constexpr T saturating_shl(T lhs, T rhs) noexcept;
constexpr T saturating_shr(T lhs, T rhs) noexcept;
// Overflowing: wrap and return an overflow flag
constexpr std::pair<T, bool> overflowing_shl(T lhs, T rhs) noexcept;
constexpr std::pair<T, bool> overflowing_shr(T lhs, T rhs) noexcept;
// Checked: return std::nullopt on overflow
constexpr std::optional<T> checked_shl(T lhs, T rhs) noexcept;
constexpr std::optional<T> checked_shr(T lhs, T rhs) noexcept;
// Wrapping: perform the shift ignoring overflow
constexpr T wrapping_shl(T lhs, T rhs) noexcept;
constexpr T wrapping_shr(T lhs, T rhs) noexcept;
// Strict: call std::exit(EXIT_FAILURE) on overflow
constexpr T strict_shl(T lhs, T rhs) noexcept;
constexpr T strict_shr(T lhs, T rhs) noexcept;
// Generic policy-parameterized shifts
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto shl(T lhs, T rhs);
template <overflow_policy Policy, UnsignedLibType T>
constexpr auto shr(T lhs, T rhs);
The behavior of each policy on shift overflow:
| Policy | Left Shift Overflow | Right Shift Overflow |
|---|---|---|
|
Returns |
Returns |
|
Returns the wrapped result with |
Returns |
|
Returns |
Returns |
|
Performs the shift (bits shifted out are lost) |
Returns |
|
Calls |
Calls |
All shift policy functions are noexcept.
Compound Bitwise Assignment Operators
constexpr auto operator&=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator|=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator^=(unsigned_integer_basis rhs) noexcept -> unsigned_integer_basis&;
constexpr auto operator<<=(unsigned_integer_basis rhs) -> unsigned_integer_basis&;
constexpr auto operator>>=(unsigned_integer_basis rhs) -> unsigned_integer_basis&;
Compound bitwise assignment operators delegate to the corresponding free-function bitwise operators and follow the same exception behavior.
&=, |=, and ^= are noexcept.
<⇐ and >>= throw std::overflow_error under the same conditions as << and >>.
Increment and Decrement Operators
constexpr auto operator++() -> unsigned_integer_basis&;
constexpr auto operator++(int) -> unsigned_integer_basis;
constexpr auto operator--() -> unsigned_integer_basis&;
constexpr auto operator--(int) -> unsigned_integer_basis;
-
++(pre/post): Throwsstd::overflow_errorif the value is already at the maximum -
--(pre/post): Throwsstd::underflow_errorif the value is already zero
Unary Operators
constexpr auto operator+() const noexcept -> unsigned_integer_basis;
constexpr auto operator-() const noexcept; // compile-time error
-
+: Returns a copy of the value (identity). This is consistent with built-in unsigned integer behavior. -
-: Deliberately disabled. Any use of unary minus on an unsigned safe integer is a compile-time error viastatic_assert. While C++ defines unary minus on unsigned integers as modular negation (2^N - x), this is a common source of bugs and is prohibited by this library. Use a wrapping subtraction policy from zero or the maximum value if modular negation is needed.
Alternative Arithmetic and Shift Functions
For cases where throwing exceptions is not desired, alternative arithmetic and shift functions are provided with different overflow handling policies. See Overflow Policies for full documentation of all policies, named functions, and the generic policy-parameterized interface.